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The electrostatic pote.ntial derived from a solution to the molecular Thomas-Fermi-Dirac equation 
for F 2 is combined with the exchange potential and modified to give the correct behavior far from the 
nuclei. One-electron energy levels in this potential are calculated and are in qualitative agreement 
with SCF orbital energies. Similar computations are carried through for F and Ar, which correspond 
to the separated and united atoms for F 2. To compensate for errors in the potential, we subtract from 
molecular orbital energies the difference of TFD and SCF orbital energies for the separated atoms. 
Now all the orbital energies are correct to a few electron volts. 

Das elektrostatische Potential, das sich ftir F 2 aus der Thomas-Fermi-Dirac Theorie ergibt, wird 
mit dem Austauschpotential kombiniert und so modifiziert, dab sich das richtige Verhalten in KernnS.he 
ergibt. Die berechneten Einelektronenenergien sind in qualitativer Ubereinstimmung mit SCF- 
Werten. Analoge Rechnungen ftir Fund Ar werden ausgefiihrt und als Grenzf~ille fiir Korrekturen 
verwendet. Dann ergeben sich alle Orbitalenergien bis auf wenige eV richtig. 

1. Introduction 

The Thomas-Fe rmi -Di rac  theory  [1] gives a relation between electron density 
and electrostatic potential  which, coupled with the Poisson equation, yields a 
differential equat ion from which either of these two quantities may  be determined. 
This provides a simple route to approximate  electron densities for many-elect ron 
systems, such as a toms and molecules. However ,  it appears [-2] that  the densities 
are not  sufficiently accurate for m a n y  molecular  properties, whose values are 
differences between nuclear and electronic contributions.  

One may  also consider using the results given by the theory for the potential  
seen by an electron at any point  within the system. One can calculate the energy 
levels and wavefunctions of a single electron in this potential,  and build up the 
a tomic  or  molecular  wavefunct ion from these. The energies are first approxima-  
tions to the one-electron eigenvalues of the Har t ree -Fock  equations. By K o o p m a n ' s  
Theorem,  these approximate  to ionizat ion potentials, while differences between 
them may  be related to the energies of electronic transitions [3]. For  molecules, 
the variat ion of  these energies with nuclear configurat ion is used to predict 
equilibrium nuclear posit ions and potential  constants  [-4, 5]. 

In  this article, we report  the one-electron eigenvalues for dia tomic fluorine 
near its equilibrium internuclear distance, using a potential  derived from the 
solution to the Thomas -Fe rmi -Di rac  equation. A number  of calculations of this 
kind have been made  in the past  for a toms [1], but  to our  knowledge there is 

* Supported by the National Science Foundation under Grant GP-20718. 

15 Theoret. chim. Acta (Berl.) Vol 25 



206 J. Goodisman: 

only one for a molecule: Recknagel [6] in 1934, considered the term values of 
Nz and N2 using the Thomas-Fermi potential for the neutral homonuclear 
diatomic system of 13 electrons plus the Coulombic potential of two nuclei of 
charge �89 e. The energies of the lowest terms of N~- and some excited terms of N 2 
relative to ground state N 2 w e r e  calculated from differences of orbital energies 
(correcting for the change of equilibrium internuclear distance in the first case) 
and proved accurate to 1-2 eV. 

The most complete tabulation of atomic results, for both the T-F and TFD 
fields, was given by Latter [7]. Unfortunately, he used an approximation to the 
TFD potential which means his eigenvalues are significantly changed. More 
recent workers [8] also used approximate potentials. An exception is Yonei [9], 
who treated K and Cs with a potential derived from a TFD calculation in which 
a Weizs~icker correction [1] (x 0.2) was used. Results were quite good for energies, 
and fair for calculated oscillator strengths. For the valence electron, a complicated 
modification of the exchange potential improved the results. 

The computations are described in the next section. The results are discussed 
in Sect. 3. In Sect. 4, we investigate the use of atomic results to correct the 
molecular eigenenergies for the defects of the potential. The calculated atomic 
energy levels in the Thomas-Fermi-Dirac potential by Latter could not be used 
because of the approximations he introduced, and we have had to recalculate 
the results for atomic systems. Sect. 5 summarizes our conclusions. 

2. Method of Calculation 

The approximate solution of the Thomas-Fermi-Dirac equation for a homo- 
nuclear diatomic molecule, obtained by a relaxation method discussed and used 
by Sheldon [10], has been used [2] to generate approximate electron densities 
for several homonuclear diatomic systems. In terms of the function u used in 
those computations, the potential at some point in space r is given by: 

V = u2(R~ nz) - 1 _ (32 n2)- 1 (1) 

Here, R is the internuclear distance and ~ - 1 =  r2 l  + r ~ l ,  rA and r B being the 
distances to nuclei A and B. Atomic units are used (e = h = m = 1), with the charge 
on the electron taken as - 1. 

It has been shown for many quantum mechanical calculations [11] that the 
exchange energy may be represented as the interaction of the electron density 
with an exchange potential (3/2) (3/n)~ ~ .  This is added to K Expressing 0 in terms 
of the function u gives for the total potential 

v ' =  v + (3/4~ 2) [1 + u(�89162 n)-~].  (2) 

The exchange potential is set equal to zero outside the boundary of the system, 
where the electron density drops discontinuously to zero. Since V' does not 
approach a Coulombic potential as one goes far away from the nuclei, as it 
should, Latter suggested for atoms [7] that V' be used whenever it is greater 
than r-  t and that V' be replaced by r-  t when it drops below this. For the diatomic 
molecule, we maintain the expected shape of the problem by replacing V' by 
�89 ~-1 at all points in space where it goes below this quantity. It turns out that 
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replacing �89 ~- 1 by ro 1, ro being the distance from the molecular midpoint, changes 
our results little. 

The equation which gives the eigenvalues is 

- ~  v2~ - v'~p = e ~  (3) 

and is treated by linear variation. The matrix elements are evaluated numerically, 
using crossed Gaussian quadrature formulas, over the two-dimensional grid of 
points used to determine u, extended to larger and smaller distances from the 
nuclei. Outside the boundary of the molecule, the potential is simply Coulombic, 
V = �89 {-  1. Close to the nuclei, where the molecular potential for F 2 is essentially 
that of the F atom, we use the atomic function ~p as a series in r ~ to compute V 
and add the corresponding exchange potential. The coordinates used [2] are 
and t/; if ~ is thought of as giving the distance from the nuclei and hence replacing 
r for a one-center system, q may be considered as giving angular position. Errors 
in the resulting eigenvalues could be due to numerical inaccuracies or to in- 
sufficiently flexible basis sets. The latter will make all the eigenvalues too high, 
according to the linear variational principle. The former probably would make 
them too low, since the use of sums for integrals is a removal of some restrictions 
on the trial function. The estimation of the overall error is discussed below. 

It was thought originally that a reasonable and convenient set of basis functions 
would be 

X i = ~J' rlk~e- ~ ~ (4) 

(j and k positive integers, e a parameter to be determined) for a o orbitals, with 
multiplication by suitable factors of e i~~ x, and r (distances from the midplane 
and from the symmetry axis) for orbitals of other symmetries. This turns out not 
to be so, because of the properties of the coordinate system, which can only be 
characterized as pathological. Sheldon [10] shows that the Laplacian of a q)- 
independent function f at the molecular midpoint (4 = �89 t/-- 0) is given by 

V2 f = (O f /O~)+ - (a f /O~)_  

where (c~f /O~)+ is tile derivative for ~ =�89 e, e--+0. Thus any function which is 
continuous in ~ at this point has a zero kinetic energy here - an unnecessary 
restriction on the trial function. We decided to use the usual basis functions for 
the homonuclear diatomic problem. 

For  a o orbitals, 

Xi  = 2m'# "' e - ~ z  (5) 

with m i an integer, n~ an even integer, and ct to be determined. Here, 2 and # are 
the confocal ellipsoidal coordinates, 

2 = (r A + rB) /R;  # =- (r A -- rB)/R , (6) 

where r A and r B are distances to the nuclei A and B and R is the internuclear 
distance. For  a, orbitals, (5) was used with n~ odd. For  rc o orbitals, we used 

Xi  : ,~mi #" ' e -=a  e 'm~ [(2 2 - 1) (1 - #2)3~ (7) 

15" 
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Table 1. Eigenvalues in a two-center coulombic potential 

Symmetry Our calculation Exact a 
species ~ b e s t  - -  ~ (a. u.) - e (a. u.) 

ag 0.92 0.9664 0.9619 
ag 0.91 0.3327 0.3308 
ao 0.95 0.2493 0.2494 
~g 0.77 0.1674 0.1670 
a u 1.22 0.7020 0.6966 
a u 0.74 0.2551 0.2549 
a u 0.60 0.1384 0.1364 
au 0.60 0.1330 0.1280 
% 1.23 0.3994 0.3993 
7r u 0.77 0.1943 - -  
~rg 0.91 0.2299 0.2289 
~9 0.79 0.1335 - -  

a Bates, D.R., Ledsham, K., Stewart, A.L.: Philos. Trans. Roy. Soc. (London) A246, 215 (1953). 

with n i odd ;  for ~z, orbi ta ls ,  we used (7) wi th  n i even. Twelve basis  funct ions were 
used ini t ia l ly  in all  the  ca lcu la t ions  r epor t ed  here. In  mos t  cases, near  l inear  
dependencies  reduced  this n u m b e r  to nine or  ten. F o r  each eigenvalue,  a series 
of ca lcula t ions  were m a d e  with different values of ~ unti l  the energy as a funct ion 
of~ passed  th rough  a min imum.  Three  values  were fi t ted to  a p a r a b o l a  to de te rmine  
the best  ~. All  ca lcula t ions  were p r o g r a m m e d  in F o r t r a n  for the I B M  360. 

In o rde r  to  assess the accuracy  of the calcula t ion,  we eva lua ted  eigenvalues 

in the cou lomhic  po ten t ia l  

V = ~ - l = r A l  +r~ 1 

at  an  in te rnuc lear  d is tance  of  2.68 a o. The  energies of m a n y  of  the states of  this 
system, the H f  mo lecu la r  ion, a re  k n o w n  from exact  calculat ions.  In  Table  1 
we give our  results  and  c o m p a r e  with the  exact  values.  I t  m a y  be seen tha t  our  
energies are  correct  to  be t te r  than  0.01 a.u. 

3. Results for F 2 

F o r  Fz  at  an  in te rnuc lea r  d is tance  of 2.68 a0, the  same calcula t ions  were 
car r ied  through,  with results  given in Table  2. W e  have also given the orb i ta l  
energies f rom a mat r ix  H a r t r e e - F o c k  calcula t ion.  A t o m i c  units  (1 a.u. = 27.21 eV) 
are  used for energies th roughou t .  At  the  outset ,  we note  tha t  there  is qual i ta t ive  
agreement  for all the o rb i t a l  energies.  

The  inner-shel l  energies are  1 a.u. t oo  high, due to  the  fact tha t  the T h o m a s -  
F e r m i - D i r a c  m o d e l  gives too  high an e lec t ron  dens i ty  near  the  nuclei  (at the 
nucleus the  dens i ty  is ac tua l ly  p red ic ted  to  be infinite) so tha t  V does not  rise 
as rap id ly  as it shou ld  as one app roaches  a nucleus (the exchange po ten t ia l  is 
of  m i n o r  impor t ance  here). F o r  the  energies of abou t  - 1 a.u., which include the 
highest  filled levels, our  results  are  several  tenths  of  an a.u. too  low. F o r  the energies 
between these groups ,  the agreement  with S C F  is good.  
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O r b i t a l  %e~t e (a. u.) e(a.  u.) f r o m  S C F  ~ 

1 cr 9 11.9 - 2 5 . 3 3  - 2 6 . 4 2 3  

2 %  5.4 - 1.828 - 1.757 

3 go 4 .2  - 1.091 - 0 .746 

1 ~r, 11.2 - 25 .36 - 26 .422 

2 ~  5.4 - 1.573 - 1.495 

3 a ,  4 .4  - 0 .791 - -  

1 n ,  5.2 - 1.083 - 0 .805 

1 rt 0 5.3 - 0 .943 - 0 .663 

" W a h l ,  A . C . :  J.  c h e m .  P h y s i c s  41,  2 6 0 0  (1964). 

The order of the energy levels, 

16r 0 = l~r, < 2~r o < 2~r, < 3~r 0 < 1~, < 1~ 0 < 3a u 

is almost correct; l~r u should actually be slightly below 3~r o. The difference of 
energies for lcr 0 and l a ,  (the former should actually lie slightly lower) we take 
as an indication of the max imum numerical error in our calculation. These 
wavefunctions vary more rapidly in space than those for H~.  The experimental 
ionization potential is 0.599 a.u., which is in much better agreement with the SCF 
orbital energy for the highest occupied orbital (0.663 a.u.) than that from the 
T F D  potential (0.943 a.u.). On the other hand, the error in all the higher orbital 
energies is roughly the same, so differences in these quantities, which may be 
related to spectra, are close to SCF values: 

d31 r ~ g -  e l ~  ~ = 0.14 a.u. (TFD), 0.14 a.u. (SCF) 

el~ u - e3,g = 0.0t a.u. (TFD), -0 .05  a.u. (SCF) 

el~u - ~2~u = 0.49 a.u. (TFD), 0.69 a.u. (SCF) 

and so on. 
The predicted electron affinity is the negative of the energy of the lowest 

unoccupied orbital, - e3~u = 0.79 a.u., and is undoubtedly at least three tenths of 
an atomic unit too high, but the energy of the lowest energy one-electron transition, 
e3~u- el~g = 0.15 a.u., should be much closer to the correct result. [Actually (see 
below) the errors in a and n orbitals probably do not cancel as well as those between 
two a orbitals or two n orbitals.] The experimental value for F 2 is not available, 
but, if we extrapolate results for I2, Br2, and C12 from Herzberg, we may estimate 
a frequency of 20 x 103 c m -  ~ which corresponds to 0.09 a.u. 

While a log-log plot of T F D  orbital energies vs. SCF orbital energies doesn't  
look bad, it must be admitted that agreement is not good enough to be considered 
quantitative. The poblem now becomes correction of the defects in the potential 
which led to the inaccuracies. The problem close to the nucleus seems relatively 
easy to correct [12-1, but the incorrect behavior of the higher energies seems less 
so. It may be, however, that the problems with the potential are common to both 
atoms and molecules. For  atoms, SCF calculations are readily available, while 
T F D  calculations are easily performed. For  large molecules, only the latter may 
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be possible. If the molecular orbitals can be correlated with atomic orbitals, 
corrections derived from the atomic work can be applied to the molecular energies. 
Such correlations are of course part of every quantum chemist's education. As 
is shown below, this leads to a great improvement in predicted orbital energies. 

4. Atomic Calculations 

Latter [7] gives an extensive tabulation of "Atomic Energy Levels for the 
Thomas-Fermi and Thomas-Fermi-Dirac Potential". However, he replaced the 
TFD potential, which must be calculated separately for each atom, by an ap- 
proximate universal potential. Its deviation from the correct potential, it is stated, 
is less than five per cent for Z > 5. This is too large for our purposes. As we will 
see below, the changes in orbital energies due to this approximation are tenths of 
atomic units. It was thus necessary to compute energies for the true TFD potential 
for several atoms. 

The differential equation for the radial part of an atomic wavefunction of 
orbital angular momentum l is 

dZ_~_~ + [2me 2mV(r) + l(l+l)ltp=O (8) 
dr 2 [ ~ h 2 r 2 ] 

where ~p is the radial wavefunction multiplied by r. Using the fact that ~p(0)= 0, 
we may substitute for (8) the integral equation 

[2me 2m l(l+l)] , ,  , 
tp(r)=r~v'(O)-!(r-r')L hz h2 V(r')+ - -~-- t~ptr )dr  . (9) 

Since ~v goes as ?+1 as r approaches 0,~p'(0) is 0 except for s states. The overall 
normalization of ~p is irrelevant for our purposes. As did Latter, we solve (9) as 
a difference equation, using equal spacing in r ~. We evaluate all integrals using a 
Newton-Cotes five-point rule. The orbital energy e is determined, generally to 
0.01 a.u., by integrating outward from r = 0 for successive trial values of g until 
we obtain one too high and one too low, as judged by following the behavior of 
the functions for large r. The computations were carried out using the APL 
system of the 360 computer. 

We first verified the accuracy of our procedure and choice of spacing of points 
by calculating energies for the F atom in Latter's approximate potential. Latter 
used different integration formulas in his work. Then we solved the TFD equation 
for this atom and determined energy levels in the correct potential (the TFD 
potential corrected for exchange and proper asymptotic behavior as in the previous 
section). Results are given in Table 3. It is seen that our energies agree with those 
given by Latter for his potential. 

It is also seen that there are substantial differences between the energies in 
the two potentials. For the ls, the TFD result is 1 a.u. closer to the SCF result 
than Latter's; for the 2s and 2p, there is a difference of 0.1 a.u. in the other direc- 
tion. It may also be interesting to note that Herman and Skillman [13], performing 
SCF calculations with the exchange term replaced by a local potential propor- 
tional to Q§ obtained -25.27, -1.318 and -0.625 a.u. for the orbital energies. 
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T a b l e  3. O n e - e l e c t r o n  energies  for  f luo r ine  a t o m s  
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O r b i t a l  L a t t e r "  E n e r g y  (a. u.) T F D  pot .  S C F  c 
L a t t e r  po t .  b 

Is  -- 24.18 a -- 24.25 --  25.38 --  26.383 

2S -- 1.541 -- 1.55 -- 1.65 --  1.573 
2p -- 0.858 -- 0 .857 --  0.96 -- 0 .730 

a La t t e r ,  R.:  Physic .  Rev.  99, 510 (1955). 
b C a l c u l a t e d  wi th  o u r  p r o g r a m s  us ing  L a t t e r ' s  a p p r o x i m a t e  po ten t i a l .  

~ Clement i ,  E., R o o t h a a n ,  C .C . J . ,  Yosh imine ,  M. :  Physic .  Rev.  127, 1618 (1962). 

d N o t  g iven  b y  La t t e r ;  i n t e r p o l a t e d  f r o m  his  T a b l e  us ing  - e = k Z  ~. 

T a b l e  4. O n e - e l e c t r o n  energies  for  a r g o n  a t o m  (a. u.) 

O r b i t a l  e, T F D  pot .  e, S C F  p o t . "  

2p - 9.31 - 9.58 

3s - 1.08 - 1.28 
3p - 0.62 - 0.59 

3d - 0 . 0 6 1  - -  

" Czyzak ,  S.J . :  As t rophys i c .  J. Supp .  7, 53 (1962). 

The TF D results arc; thus about as good (in the sense of approximating the SCF 
results) as these. In addition to the F atom, which represents the separated atoms 
for the F z molecule, we also want to consider the atom formed by F 2 when the 
internuclear distance approaches zero (united atom), Argon. Some energy levels 
calculated in the TFD potential for this atom are given in Table 4, and compared 
with SCF results. 

The correlations of the molecular orbitals with orbitals of the united atom 
and separated atoms are easily obtained and are given in many sources [14]. 
It must be decided, :for each orbital, whether the united atom or separated atom 
limit is more relevant. For  the inner shell orbitals l a  o and lau, there is little problem. 
When R is near the equilibrium internuclear distance these are essentially un- 
affected by the binding process. This is shown by comparing orbital energies for 
the molecule and the atoms, from the SCF or TF D  calculations. The orbitals are 
lSA _+ lSB, A and B denoting the two atoms, and the lack of substantial overlap 
between the atomic orbitals makes el," and el~. close to equal. Of course, if the 
TF D results of Table 1 are corrected by addition of - 1.00 a.u., the difference 
between SCF and TFD energies for the F ls orbitals, we obtain approximately 
correct energies for the lag and l a ,  orbitals: el~g = el~ u = -  26.35. We have used 
the average. The last figure may be in error by several units, as indicated by 
e1r being 0.03 a.u. lower than ex~" in the TFD results. 

The remaining molecular orbitals correlate with the 2s and 2p orbitals of the 
separated atoms, and with 2s, 2p, 3s, 3p, 3d and 4s of the united atom. In general, 
one expects that the orbitals of lower energy, which are less diffuse, are more closely 
related to the separated atom limit, and the higher energy orbitals closer to the 
united atom. The orbital energies provide some guidance here. Thus, 2o- o correlates 
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Table 5. Corrected orbital energies 

Orbital AO used for comparison Corrected e (a. u.) 

l a  o F ls  - 26.36 
2a  o F 2s - 1.75 
3a  o F 2p, Ar 3s - 0.86, - 1.29 
lau F ls  - 26.35 
2a u F 2s, Ar 3p - 1.49, - 1.54 
3a, F 2p - O.56 
1~, F 2p - 0.85 
l~g F 2p - 0.71 

Table 6. Ionization potentials for F 2 (eV) 

Orbital energies Experimental a 

State This work, This work, Hartree-Fock Ionization 
uncorrected corrected calculation potential 

2/7g 25.7 19.3 18.0 15.63 eV 
22; 7 29.7 23.4 20.3 17.35 eV 
2H u 29.5 23.1 21.9 18.46 eV 

a Frost, D.C., McDowell, C.A., Vroom, D.A.: J. chem. Physics 46, 4255 (1967). 

with the F 2s orbitals and the Ar 2s orbital. The energy of the latter is much too 
low, so ea~, is corrected using the F results: 

e2~, = - 1.83 + ( -  1.57 + 1.65) = - 1.75. 

Similarly, 1re u has energy much closer to the separated atom limit eZVp=-0.96 
than the united atom limit eZpAr-- -9 .31,  so its energy is corrected by addition of 
( -0 .73+0 .96 )  to give -0.85.  It has been noted [15] that the highest filled ng 
and nu orbitals resemble the separated atoms in the halogen molecules. 

For  e3~g there is some ambiguity. The energy of -1 .09  is fairly close to the 
At_ _ 1.08. The separated atom e~p=-0 .96  but even closer to the united atom e3s-  

former gives a correction of + 0.23 and the latter a correction of -0 .20,  so only 
the former gives a satisfactory result. Both are included in Table 5. Except for 
the case just mentioned, we agree with the Hartree-Fock orbital energies to 0.08 
a.u. or better. It is interesting that Recknagel [6], discussing his results for N 2 ,  

noted that certain orbitals resembled orbitals of the united atom, but not the 
orbitals with which they supposedly correlate. For  instance, his 3ag MO resembled 
the united atom 2s rather than the 3s. 

If we agree to use the corrections derived from separated atoms throughout, 
we may predict ionization potentials for F z going to several states of F~. These 
may be compared with experimental results from photoelectron spectroscopy [-16]. 
In Table 6 we give our results (orbital energies) without the atomic correction and 
with correction, the SCF results, and the experimental ionization potentials, in 
electron volts. The errors in the corrected values are about 30 %, compared to 
errors of about half this for the SCF results. 
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As we have mentioned, orbital energies are used to predict nuclear configura- 
tions and related properties when total energies are not readily available [4]. 
The binding energy would be calculated as I; ei (separated atoms) - 2;8i (molecule), 
the sums in each case running over occupied orbitals. When SCF calculations 
are treated this way, it may be shown [5] that the binding energy (B.E.) will be 
increased by 2 (B .E . ) -ZZBO(B.E. ) /OZ B over the difference of total energies. 
The sum here is over the nuclei in the molecule, and the partial derivatives are 
small according to the isoelectronic principle. The difference of TFD orbital 
energies (atoms minus molecule) is 0.75 a.u.; the difference of SCF orbital energies 
is 0.43 a.u. The correct binding energy is 0.062 a.u. 

5. Summary and Conclusions 

Orbital energies for the F 2 molecule were calculated using the TF D  potential 

(• + -  plus an exchange potential, with the overall potential replaced by �89 \ rA ra J 

when it dropped below this. This modification assures the correct boundary 
condition at large distances from the nuclei. The orbital energies were in quali- 
tative agreement with SCF values. When they are corrected by comparing atomic 
eigenvalues for the F atom calculated by SCF with those calculated using the 
TFD potential, all the eigenvalues agree to about 1/20 a.u. 

An error of 0.05 a.u. (1�89 eV) is quite comparable to the difference between 
ionization potentials; and Hartree-Fock orbital energies, and less than the errors 
made in atomic calculations when the exchange interaction is replaced by the 
free-electron approximation, i.e., an exchange potential proportional to ~ .  Even 
with corrections, however, there are several unsatisfactory features. 

The order of the eigenvalues of the outer shell F 2 orbitals, which all correlate 
with the 2p atomic orbital of Fluorine, is not quite correctly given. The 3~ 0 
energy is incorrectly lower than the 1~ u energy. Similarly, it may be noted in 
Table 6 that the 21-I o -  2IIu spacing is identical to the SCF value, but the 21;o+ 
value is incorrect relative to these. We have remarked above that the potential 
is certainly in error near the nuclei, where the TF D  density is known to be quite 
incorrect. (We have shown recently [12] how this error can be largely corrected 
in a simple way.) The ~ orbitals vanish at the nuclei, the a orbitals do not. Thus 
the correction will affect them differently. This must be investigated. 
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